The Right Tool For A Successful Project

Presented by Content Expert:
Mary Nickel, RN, MSM
Director, Medical Staff Services/Clinical Quality/Risk Management
Saint Clare’s Hospital, Weston, WI
Presentation Objectives

• Explain various quality tools for use in designing new or revising current processes
• Provide an overview of two quality improvement methodologies
• Identify the steps that lead to a successful project
• Emphasize the importance of ongoing monitoring to sustain the gain
QUALITY TOOLS

- DMAIC
- PDSA
- PATIENT SIMULATIONS
- FMEA
- PROCESS MAPS
- GRAPHS
Designing New or Revising Current Processes

- Process mapping
- Failure Modes and Effects Analysis (FMEA)
- Patient simulations
Process Mapping

- Visual diagram of the steps in a process
- Identifies the roles accountable for each step in a process
- Shows handoffs between steps
- Includes the length of time to complete a step
- Group/team participates in process
Process Mapping - Continued

- Process mapping is initiated:
 - Prior to implementing a new service or process
 - Revising a current process
 - Clarifying a process
 - Defining the “AS IS” state
 - Creating the “FUTURE” state
FMEA

- Proactive, multidisciplinary approach
- Evaluates a process
 - Before implementation
 - Before something happens
- Identifies where a step in the process might fail
 - Mitigate risk
 - Prevent harm
FMEA - Continued

• Questions to ask:
 – Failure Mode – “What could go wrong?”
 – Failure Causes – “Why would the failure happen?”
 – Failure Effects – “What would be the consequences?”
• Assign the Risk Priority Number (RPN)
 – Likelihood of occurrence (1-10)
 – Likelihood of detection (1-10)
 – Severity (1-10)

• Based on the RPN, create an action plan
<table>
<thead>
<tr>
<th>Steps</th>
<th>(What Could Go Wrong) Failure Mode</th>
<th>(Why Would the Failure Happen) Failure Causes</th>
<th>(What Would be the Consequence) Failure Effects</th>
<th>Likelihood of Occurrence (1-10)</th>
<th>Likelihood of Detection (1-10)</th>
<th>Severity (1-10)</th>
<th>Risk Priority Number (RPN)</th>
<th>Actions to Reduce Occurrence of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FMEA Skin Breakdown

<table>
<thead>
<tr>
<th>Steps</th>
<th>Failure Mode (What could go wrong)</th>
<th>Failure Causes (Why would the failure happen)</th>
<th>Failure Effects (How will it impact the patient)</th>
<th>Likelihood of Occurrence (1-10)</th>
<th>Likelihood of Detection (1-10)</th>
<th>Severity (1-10)</th>
<th>Risk Priority Number (RPN)</th>
<th>Actions to Reduce Occurrence of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Skin/Risk Assessment:</td>
<td>• Failure to complete • Failure to document • Not within timeframe • Not considered a priority</td>
<td>• Forgetfulness • Time factor • Not assessing whole patient • Different RNs</td>
<td>• Not recognized as having risk • Not getting proper treatment • Did not prevent breakdown • Consults not ordered</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Upon Admission (within 2 hours) and every 8 Hours thereafter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2: Braden Scale (Admission)</td>
<td>• Lack of applying interventions based on the Braden Scale</td>
<td>• No purpose • Do not know how to apply the scale</td>
<td>• Lack of implementing critical path - goal not achieved. • Lack of implementing interventions - skin breakdown not prevented</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3: Critical Pathway</td>
<td>• Pathway not initiated • No purpose • Time factor</td>
<td>• Goal not achieved</td>
<td></td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Patient Simulations

• “Dry-run” of a new or revised process using a process map
• Hands-on approach by direct care staff
• Identifies:
 – Strengths
 – Opportunities for improvement
• Improves quality and safety of care:
 – Timeliness
 – Skills
 – Communication
 – Standardization

This presentation is part of an on-line series, brought to you through a collaboration between the Wisconsin Office of Rural Health and the Wisconsin Hospital Association. Property of the Wisconsin Office of Rural Health.
Patient Simulations - Continued

- Rescue 1 simulations
- Trauma simulations
- Stroke simulations
- Chemotherapy simulations

This presentation is part of an online series, brought to you through a collaboration between the Wisconsin Office of Rural Health and the Wisconsin Hospital Association. Property of the Wisconsin Office of Rural Health.
Quality Improvement Methodologies

- Plan, Do, Study, Act (PDSA)
- Define, Measure, Analyze, Improve, Control (DMAIC)

This presentation is part of an on-line series, brought to you through a collaboration between the Wisconsin Office of Rural Health and the Wisconsin Hospital Association. Property of the Wisconsin Office of Rural Health.
• Dr. W. Edwards Deming
• Total Quality Management (TQM)
• Three key elements of TQM:
 1. Focus on the customer
 2. Employee involvement
 3. Continuous improvement
ACT
Adopt the change.
Or abandon it.
Or run through the cycle again, possibly under different environmental conditions.

PLAN a change or a test aimed at improvement.

DO (carry) it – preferably on a small scale.

STUDY the results.
What did we learn?
DMAIC

- Motorola – Six Sigma strategy
 - Inspired by Dr. Deming, TQM
 - 3.4 DPMO (Defects per million opportunities)
- Improve manufacturing processes
- Eliminate defects
- Eliminate waste
- Increase customer satisfaction
- Data-driven
<table>
<thead>
<tr>
<th>STEP</th>
<th>GOAL</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE</td>
<td>• Define the project’s purpose and scope</td>
<td>• A clear statement of the intended improvement and how it will be measured, along with background on the process and the Voice of the Customer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEASURE</td>
<td>• Focus the improvement effort by gathering information on the current situation</td>
<td>• A more focused problem statement and baseline process sigma</td>
</tr>
<tr>
<td>ANALYZE</td>
<td>• Identify deep causes and confirm them with data</td>
<td>• A theory that has been tested and confirmed with data</td>
</tr>
<tr>
<td>IMPROVE</td>
<td>• Develop, test, and implement solutions that address deep causes</td>
<td>• Planned, tested actions that should eliminate or reduce the impact of the identified root causes</td>
</tr>
<tr>
<td></td>
<td>• Use data to evaluate the solutions and the implementation plans</td>
<td>• Before-and-after data analysis that shows how much of the original gap was closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A comparison of the plan to the results</td>
</tr>
<tr>
<td>CONTROL</td>
<td>• Maintain the gains by consistently implementing the new work methods or processes</td>
<td>• Documentation of the new method</td>
</tr>
<tr>
<td></td>
<td>• Anticipate future improvements and preserve the lessons from this effort</td>
<td>• Training in the new method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A system for monitoring its consistent use and checking results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Completed documentation and communication of results, lessons learned, and recommendations</td>
</tr>
</tbody>
</table>

Source: Scholtes, P. R., Joiner, B. L., & Streibel, B. J., 2003
Steps that Lead to a Successful Project – Identify a Project

- Identify an improvement project
 - Data supports improvement is needed
 - Process not working as intended – many workarounds
 - Not meeting customer expectations
 - Aligns with an organization’s initiatives
- Supported by leadership
Steps that Lead to a Successful Project – Select a Team

• Select a team – 6 to 8 team members
 – Champion to support the project
 • Defines the problem
 • Sets the project’s goals
 • Establishes the charter
 – Leader
 • Prepares and plans for meetings, i.e. developing an agenda prior to each team meeting
 • Facilitates meetings
 • Provides updates to champion
 – Staff closest to the process/customer
 • May need diverse talents/knowledge, i.e. IT
Steps that Lead to a Successful Project – First Meeting

• At first meeting:
 – Champion “sets the stage”
 • Share charter
 • Defines the problem
 • Identifies the goals
 – Leader
 • Creates an agenda
 • Introduces team members
 – Conduct an ice breaker
 • Establish ground rules with team
Steps that Lead to a Successful Project – Team Meetings

• Leader
 – Plans and prepares for each meeting
 – Chooses and explains methodology
 • PDSA or DMAIC
 – Selects “tools” for the project
 – Encourages all team members to participate
 – Determines responsibilities of team members related to team tasks

• Team members
 – Participate
 – Complete assigned responsibilities
Steps that Lead to a Successful Project – Metrics and Analysis

• What does the data say?
 – Before the improvement
 – After the improvement

• Various tools
 – Pareto
 – Run chart
 – Control chart

This presentation is part of an on-line series, brought to you through a collaboration between the Wisconsin Office of Rural Health and the Wisconsin Hospital Association. Property of the Wisconsin Office of Rural Health.
• Vilfredo Pareto - 80/20 rule (80% of effects come from 20% of causes)
• Shows detail in categories
• Analyze for frequency of problems
PATIENT SATISFACTION - TOO MUCH NOISE

Number of Complaints

- Alarms - equipment
- Call lights
- Staff talking
- Pagers
- Elevators
Run Chart

- Displays data over time
- Analyze for patterns/trends in data points
 - Shifts
 - Trends
 - Cycle
 - Outliers
 - Same value
Utilization Review
Average Length of Stay
July 2008 thru February 2009
Goal = \leq 5.13 Days

Average length of stay

- **Oct**: 3.00 days
- **Nov**: 4.00 days
- **Dec**: 3.50 days
- **Jan**: 2.50 days
- **Feb**: 3.00 days
Control Chart

- Dr. Walter Shewhart
- Study sources of variation
 - Common causes
 - Special causes
- Shows if process is in statistical control
 - Upper control limit
 - Lower control limit
- Analyze for:
 - Outliers
 - Shifts
 - Trends
 - Cycle
 - Same value

This presentation is part of an on-line series, brought to you through a collaboration between the Wisconsin Office of Rural Health and the Wisconsin Hospital Association. Property of the Wisconsin Office of Rural Health.
Identification of New Cases of Influenza & Mgmt of Outbreaks

Percentage of Influenza Cases

Oct07 Nov07 Dec07 Jan08 Feb08 Mar08 Apr08

UCL=0.427
\bar{U}=0.225
LCL=0.024
Steps that Lead to a Successful Project – Pilot Testing

• Tested improvements identify:
 – Any gaps in the process
 – Unplanned/unanticipated events
 – Necessary revisions in the process
 – Additional education/training needed for process rollout
Steps that Lead to a Successful Project – Operationalize

- Embed quality and safety into operations through standardizing and hardwiring:
 - Standardize
 - Policies and procedures
 - Equipment, supplies, materials standardized
 - Education/training
 - Timeframes for completing processes
 - Documentation requirements
Steps that Lead to a Successful Project – Operationalize

- Hardwire
 - Script any communications
 - Reinforce new behaviors
 - Communicate results of new projects
 - Hold staff accountable
 - Celebrate successes
Steps that Lead to a Successful Project - Communication

- Over communicate
 - Project updates
 - Lessons learned
 - Results
 - Success stories
Sustain the Gain

- Create a control plan to assure that process performs as expected:
 - Assign responsibility – identify who owns the process and will manage the process
 - Determine monitoring frequency of improvement plan
 - Data collection and reporting of results
 - Establish plan when the process is not performing as expected or behaviors start to revert

- Maintain a log of lessons learned
 - Assists with other projects
In Summary

- Described various quality strategies
 - Process mapping
 - FMEA
 - Patient simulations
- Provided an overview of two quality improvement methodologies
 - PDSA
 - DMAIC
In Summary - Continued

• Identified steps that lead to a successful project
 – Identifying the project
 – Selecting the team
 – Having the first team meeting
 – Ongoing meetings
 – Metrics and analysis
 – Communication

• Emphasized the importance of monitoring to sustain the gain
 – Importance of the control plan
References

For More Information

Mary Nickel
St. Clare’s Hospital, Weston, WI
P: 715-393-2521
E: mary.nickel@ministryhealthcare.org

Wisconsin Office of Rural Health
Kathryn Miller
Rural Hospitals & Clinics Program Manager
P: 800-385-0005
E: kmiller9@wisc.edu

Wisconsin Hospital Association
Dana Richardson
Vice President, Quality Initiatives
P: 608-274-1820
E: drichardson@wha.org